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1.  INTRODUCTION 

V.'c uhall give a finitely convergent procedure for solving the problem 

(P)      Maximize f(x) subject to ax + b ^ 0, 1 = 1, . . . t m, 

where f Is a strictly concave and dlfferentlable function of the n-vector 

x which assumes Its unconstrained maximum. The a are n-vectors and 

the b are scalars . 

No additional assumptions whatever, for example regarding the 

exclusion of degeneracy or the existence of a feasible solution of (P) , 

are required.  In fact the presence of degeneracy can only hasten conver- 

gence, and no perturbation, either real or virtual, is ever required. 

If (P) is infeaslble, tue procedure detects this fact routinely and 

terminates with a display of an infeasible subset of the constraints. 

Thus no feasible solution is needed to initiate the calculations. 

An interesting aspect is that provision is made for making effective 

use of prior information which may be available regarding which constraints 

are likely to be binding at the optimum solution of (P) (under the tenta- 

tive assumption that (P) is feasible). 

The present method is rot a "gradient" or "simplicial" or approximate 

method.  It is aimed directly at constructing a solution of a certain 

version of the Kuhn-Tucker Ccnditions [7] for (P), which are necessary 

and sufficient for an optimal solution.  It can be interpreted as 

solving a finitely convergent and "slowly changing" sequence of simpler 

maximization problems involvir.g only linear equality constraints. 

When f(x) is quadratic the method specializes to a promising 

generalization of Theil and van de Panne's algorithm for quadratic 
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programming [8], with the added generality being that (a) certain 

restrictive assumptions (regarding the feasibility of (?) and the 

exclusion of degeneracy) are shown to be completely unnocessary, and (b) 

provision is made for utilizing prior information regarding a given problem 

so as to shorten the calculation time. 

In order not to obscure the fundamental approach, in the next section 

we derive the basic procedure and Illustrate it by example under two 

simplifying assumptions. These assumptions are removed in the following 

section.  Specialization to the quadratic case is the subject of the 

penultimate section, and finally we discuss some computational considerations 

and give a modification which permits linear equality constraints to be 

handled efficiently. 

Lengthy interruptions of the text are avoided by placing formal 

statements and proofs of all theorems in the Appendix . 

By way of preliminaries, we introduce two definitions.  A subset S 

of constraint indices is said to be consistent when the set (x: ax 

+ b = 0, 1 e S) is not empty, and independent when the n-vectors a , 

i e S, are linearly Independent. The empty sut Is considered to be both 

consistent and independent. We denote by M the set of the first m posi- 

tive integers, where m is the number of constraints of (?). The gradient 

of f(x) is denoted by vf(x). 



2.  DEVELOPlViENT UNDER TWO SIMPLIFYING ASSUMPTIONS 

Throughout this paper, f(x)  is assumed to be as stated in the 

introduction.  For the sake of expository convenience, in this section we 

also temporarily assume (a) that  (P)  is feasible, which implies that (P) 

has a unique optimal solution x  , and (b) that the set B = {i e M: a.x + b = 0] 

is independent. 

Since our computational procedure is based on constructing a solution 

oi the Kuhn-Tucker Conditions for  (P) , we begin by recording without 

proof a version of Theorem 3 from [7], as specialized to  (P) .  This 

particular version was introduced in [6, Ch. 3]. 

Theorem (Kuhn-Tucker): 

Assume  that    f(x)     is differentiable and concave.    Then a trial solution 

x      is an optimal solution of    (P)     if and only if for some subset    S    ^ M 

. v       o of constraint   indices  there exist    m    real numbers  (dual variables)    u 

such that    (x   ,   u )     satisfies  the associated  (Kuhn-Tucker)  conditions: 

f(KT-l)  v  f(x) +    £    u a    = 0 
(=s) ies   i 1 

^(KT-2)   ax + b    = 0,  1 e  S;  u    = 0,   i e  M-S 

(KT-3)   ax +  b    ^ 0,   i e  M-S 

(KT-4)  u    ^ 0,   i e  S  . 

The method suggested below for constructing a solution of the Kuhn- 

Tucker Conditions  (KT-1,..., 4)  involves solving for certain trial sets 

S C M , the equations  (KT-1)  and (KT-2) (together designated by the ^ymool 

(=5) ) and then checking the inequations  (KT-3) and  (KT-4)  to see if they 

are satisfied.  If they are satisfied, the desired optima^ solution of (P) 

is obviously at hand  This approach 



suggests the following important definition. A set S c M is said to 

o  o 
be valid if and only if there exists a pair (x , u )  which satisfies 

(KT-1, . . . , 4) associated with S  .  It is shown in Proposition 1 

(see the Appendix for the proofs of this and subsequent propositions) 

that for any consistent and independent trial set S c M the equations 

S  S 
(=S)  have a unique solution (x , u") , and it will be 

shown in eccticn 2 ,1 bcl ov  that there is at least one valid set, 

and that every valid set is consistent and Independent.  Thus we see that 

the problem of solving  (?)  can be viewed as the problem of finding a 

vnlid set S  ; for then by the definition of validity  (=S ) yields 

as its unique solution an optimal solution x  of (P)  and the corres- 

ponding dual variables u  .  How one may go about finding a valid set 

is the main concern of the balance of this paper. 

2.1 Characterizing a Valid Set 

It is shown in Proposition 2 that there exists at least one triple 

*  *  * *  * 
(x , u , S ) satisfying  (KT-1, . . . , 4) , and that  (x , u ) is 

unique.  It is clear irom the nature of (KT-1, . . . , 4)  that S 

can be taken as any set S satisfying A C s ^ B  , where we make the 

definitions 

A  3 H {i e M:  u > 0) 

* 
B = {1 e M:  ax + b = 0} . 

In words, the set A  is the collection of constraint indices corresponding 

to the constraints which are active at the optimum of  (P)  in the scnee 

that their dual variables are strictly positive, and B  is the set of 

Indices corresponding to constraints which are binding at the optimum. 

From  (KT-2)  and (KT-4) , A c B  . Conversely, it is clear that  S 



must satisfy    A   C s C B     »or else    (x  , u  ,  S)     cannot satisfy 

(KT-1,   .   .   .   , 4)   . 

From these and previous  remarks we have the  following characterizations 

of validity:    S c M    is valid  if and only if    A    c s c B      if and only  if 

S      S 
S    is consistent and independent and    (x  «  u )    satisfies     (KT-3)    and 

(KT-4)     in addition to    (mS)   . 

Unfortunately, neither    A      nor    B      are likely to be known a priori, 

so that  the identity of a valid set is not immediately available from 

the  first characterization.     From the second characterization we do have, 

ho'vever,   (a)  the useful necessary condition that a valid set must be 

consistent and  independent, which enables  the search to be restricted   to 

such sets,  and (b)  a convenient test  for validity to apply to such 

candidates. 

2.2    Determining the Order  of Trials 

The  fact  that there  is  but a finite number of subsets of    M 

immediately establishes  the existence of a finite  procedure for finding a 

valid set—enumeration of  consistent and Independent sets.    A non-repeating 

sequence    <S >    of such trial sets  terminates at  the first trial for which 
u v 

(xS   ,   uS )    satisfies    (KT-3)    and    (KT-4)    associated with    SV   ,  i.e. 

u 
at the first valid    S     .    When    m    is  large, of  course, undirected enumer- 

ation  is  likely to be computationally  impractical.    We  therefore develop 

rules  for directing the enumeration so as  to keep the number of necessary 

trials  relatively small. 

If    S     is net valid,   then either    S-B    t 0    or    A -S ^ jÖ  ,  or both. 

For  obvious  reasons  the set    S-B      will be called  the excess of    S  , 

and    A -S    will be called  the deficiency of    S   .    Clearly the smallest 

change  in    S    which would  lead  to a valid set would be  to add  its deficiency 
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and delete  Its excess.    The number of indices  in     {A -S)U{S-B  )     is 

therefore a measure  of  the distance«^      d(S)    between    S    and  the nearest 

valid set.     If    S    Is consistent and  independent, as well as  invalid, 

S 
then by the second characterization of validity we have    ax    +  b    < 0 

S 
for some    i e M-S   ,  or    u    < 0    for some     i e S   , or both.    An event of 

the  former type will  be called a feasibility alarm,  and an event  of the 

latter type an optimality alarm.    A feasibility alarm from the deficiency 

will be called a real alarm,  as will an optimality alarm from the excess 

of    S   . 

An appealing conjecture  is that the  feasibility alarms coincide with 

the deficiency, and that the optimality alarms coincide with the excess of 

a consistent and independent but invalid set    S   .     If this were  true, 

then by solving    (=S)     one could immediately determine the identity of a 

valid set.    Unfortunately this conjecture of perfect coincidence is not 

true  in general,  as  can easily be shown by counterexample  (even  for the 

simple case    n = 2     and    f(x)    diagonal quadratic;  see the example of 

section 2.3).    What can be shown (Proposition 3),  however,  is  that at   least 

one alarm ia real.     This  result suggests  a  procedure for determining the 

order of  trials by essentially heeding the  alarms one at a time.     By 

heeding an alarm we mean adding to    S    a constraint which give:?  a feasibility 

alarm,  or deleting  from    S    a constraint which gives an optimality alarm. 

For convenience of  exposition, we assume   temporarily that    S'-H      is consistent 

- The öLzt-jAc?  be iveen a cet    C C M    and a set    D C M    can  be 

defined  as  the nntber  cf  element':  Ir. the symmetric dixi'ti'er.ce set 

(C-D}U(D-C}   . 



and  independent whenever    S    Is consistent and  independent and    i     is a 

feasibility alarm due  to    S   ;   this  assumption will  then be removed. 

o 
Let    S      be an arbitrary consistent and   independent  initial  trial set, 

and  let  it be invalid  (i.e.   let    d(S0) s 1  ).     If    8°    happens to yield 

exactly one alarm    i     ,   then by Proposition 3  It Is real and therefore 
o 

d(S    ± i  ) = d(S  )  -  1   .    Here we use  the notation    S    i i      to mean 
o o 

S  1)1      or    S  -i      according as    i    f! S    or    i    e  s  (i.e.  according as 
o o o o 

i       is a feasibility or an optimality alarm),   in order to avoid having to 
o 

distinguish between feasibility and optimality alarms.     If    S      yields 

more  than one alarm,   then by Proposition 3 we  have    d(S    ± i)  s d(S  )  - 1 

o 
for some  i e T , where T is the collection of alarms due to S 

o 
Therefore by trying each of the sets S ± i t i e T , we would obtain 

at least one set which is closer to the closest valid set (and, in fact, 

closer to every valid set). We call this the first generation of trials. 

If d(S ) = 1 , then a valid set is found during the first generation of 

o 
trials; if d(S ) > 1 , a second generation of trials is necessary. 

For each 1e T , define T  to be the set of alarms generated by 

8° ± i . Since d(S ) > 1 , we have T ^ 0 (1 e T) . The second gener- 

o 
ation of trials consists of the sets S ± 1 • J for all i e T and 

J e T  . The symbol S ± i ± j means, of course,  (S ± i)Uj  if 

j ^ (5° ± i) and (8° ± i) - J if J 6(8° ± i) . By Proposition 3, 

d(80 + i ± J) = d(S0) - 2 for some i e T and J e T . If d(80) = 2 , 

then a valid set  is  found at  this generation;   if    d(S  )  > 2   ,  a third 

generation is  necessary. 

Continuing analagously, one constructs  third and higher order 

generations  as necessary.     If  at  any  trial  a set  is  encountered which has 
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been  tried before,   it may,  of course,  be  discarded. 

It  is clear  that this  search strategy  terminates after exactly    d(S  ) 

generations of  trials with the  (unique)  valid set which is closest to    S     , 

and that computational economies can be achieved due to the  fact  that 

changes  in trial sets  involve adding or deleting only one constraint 

at  a time.    A summary follows. 

Rules  for Ordering  the Trials 

0. Let    S   be consistent andirrlBpendent, and let    T   be the set of 

alarms determined by    S     .     If    T = 0   ,  then    S       is valid and  the 

procedure terminates;   otherwise,  a  first generation of  trials   is 

necessary. 

1. At the first generation of trials,  for each    i e  T     let    T 

denote the set of alarms generated by    S    ± i   .    If    1=0    for 

♦ o        ♦ 
some    i    e T   ,   then    S    ± i      is valid and the procedure  terminates; 

otherwise,  a second generation of  trials   is  necessary. 

2. At the second generation of  trials,   for each    i t   T    and    J  e  T     , 

o 
let    T be the set of alarms generated by    S    ± i r   j   .     If 

* * o * ♦ T      » J9        for some    i    e  T  , and    J    e T ♦   ,  then    S    ± i    ±3 

is valid and  the  procedure  terminates;  otherwise, a  third generation 

of  trials   is  necessary. 

3. Third and higher order generations of  trials are constructed 

analagously. 

(if at any trial a set  is encountered which has been tried previously, 

it may be discarded) . 
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It has been temporarily assumed that SUi Is consistent and Independent 

whenever S Is and 1  Is a feasibility alarm due to S . By the nature 
o 

of the above rules, the effect of this assumption Is to ensure that every 

trial set at every generation Is consistent and Independent, so that 

Proposition 3 can always be applied. This assumption may be dropped by 

appealing Instead to Proposition 4, which asserts that SUl  Is Independent 
o 

when  It Is ccnslstent,  and that  If    SUl       Is   Inconsistent  then  the equations 

th Vi+ ^ =0 
o 

s   s 
have a unique solution z  ,  z < 0 for at least one  1 In the excess 

of SUl  , and  {(SUl ) - l)  Is consistent and Independent for any 1 

such that zk < 0 .  It follows that the above rules are applicable 

If we Interpret "optincllty nlarns" «is 'boing defined for InconBistcnt cetn SUi. 

S 
as the constraints corresponding to z < 0 . The resulting procedure Is 

given In Figure 1 (Ignore for the time being the positive branch of step 

2b, which Is irrelevant when (P)  Is feasible). 

Step 4 of Figure 1 can obviously oe omitted when an optlmallty alarm 

Is being heeded, for the result can only be another consistent 

and independent set.  It can also be omitted when a feasibility alarm is 

being heeded. For example, when f(x)  is quadratic (see section 4) 

step 3 can go directly to step la and any inconsistency will be auto- 

matically detected during the calculations, thereby commanding transfer 

of control to step lb.  When a method is us-Jd for step la which does not 

routinely and quickly reveal Inconsistency of the trial set, step 3 should 

go to step lb when a feasibility alarm is being heeded—if the equations of 

step lb have no solution (and efficient matrix partitioning methods 

[4; Appendix C of 6] should be used here) then control 



10 

la 
i 
i 

Choose an initial 
consistent and inde- 
pendent S , and put 

lb 

Solve the system of 
equations 

Vf(x) + .11 u. a = 0 
ieS i i 

a.x+bJ=0,ieS 
i    i    ' 

u. = 0 , i e M - S 
i 

for its (unique) 

solution (x ,  u0) 

23 

So].ve the system of 
equations 

S z   a    + a,    =0 
i   1       i« 

S-i 0 

o 

for their  (unique) solution 

z    , where    i      is the index o 

of the feasibility alarm 

which lud to   S 

2b f 

Yes; 
u.   ^ 0 , V  i  e S \ No    No   ■       s 

V"   T'    "X    z^ 0 ,  V i e 

l Yes 

a.x    +b.   ^0;vieM-S?' 

*    Terminate;     (x0,  uü)=(x ,  u  ) 

._!_. 

io7 

Terminate;   (p) infeoeible/ 

Choose the next    S    in 

accordance with the rules 

of section 2.2 

Yes 
S consistent? 1  No 

Figure 1 

A Proctidure for Concave Programming With Linear Constraints 

As noted in the text, step k  can and should be incorporated (at little or 

no additional computational cost) into steps la or 2b. 
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must be transferred to step la. 

o 
Remark;  If the initial trial set S  can be chosen to be a subset of 

B , (e.g. S = 0 ) then all optimality alarms can be ignored, as can any 

feasibility alarm which leads to an inconsistent set when heeded.  This 

follows because any consistent and independent but invalid set with no 

excess giv.s at least one (feasibility) alarm from its deficiency, and 

heeding that alarm must obviously lead to another consistent and inde- 

o 
pendent eot. Similarly, If S  can be chosen to contain A , then all 

feasibility alarms can be ignored.  Thus certain types of prior information 

lead to considerable simplifications. 

2.3 An Example 

The example of Figure 2 is designed to illustrate the operation of 

the algorithm and show that not all alarms need be real.  For convenience 

we present a graphical, rather than numerical, example in two dimensions 

(n=2) . We take  f(x)  to be the ordinary distance from x to a fixed 

point x  .  By the Kuhn-Tucker Theorem,  (=S)  is a necessary and 

sufficient condition for a maximum of  f(x)  over all x in the linear 

manifold (x:  ax + b = 0, 1 e s) .  Hence  (aS)  yields as its solution 

S 
the orthogonal projection x  of x  onto the manifold and the 

S S 
coefficients u  of  -^ f(x )  expressed in terms of the gradients 

a  , 1 e S .  Loci of the four constraints are drawn and labeled with 

constraint Indices; their gradients are also drawn in at selected points. 

The feasible region is hatched and x  Is oaikcd by a heavy dot. 

Let the initial consistent and independent trial set be arbitrarily 

chosen as, say,  S = (3,4) . S  is easily seen to yield a feasibility 

alarm for 1=1  and optimality alarms for 1=3 and 4 .  Hence the 



Figure 2 

An Example 

J2 
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first generation trial sets are  (3,4,1) ,  (4) , and  (3) .  Now  (4) 

yields only ono alarm, an optlcality alarm fcr  1 « 4 ; {3}  also yields 

one alarm, a feasibility alarm for  i = 1 ; and  (3,4,1)  is inconsistent — 

solving z.,ao + Z4a4 + a1 = 0 , one obtains optimality «lurms for both 

i = 3 and 4 .  Hence the second generation trial sets are 0 ;  (3,1) ; 

(4,1) and  (3,1) . We find that 0 yields feasibility alarms for 

i = 1,2, and 3 ; that  (4,1)yields optimality alarms for  i = 1 and 4   ; 

and that  (1,3)  yields no alarms at all.  Hence  (1,3)  is valid and the 

computations terminate. A diagrammatic summary of the trials is given in 

Figure 3.  Of course, A = B = (1,3)  is obvious by inspection of Figure 2, 

so that a valid set has indeed been found. Note that d((3,4)) ■ 2 , and 

that a valid set was indeed found in two generations. 

Looking back over the calculations, we observe that  (3,4) gave 

rise to a optimality alarm for i = 3 which was not real;  and that  0 

gave rise to a feasibility alarm for  i = 2 which was not real.  Hence 

not all alarms are real. 

(1,4) (1,3) 
VALID 

Zeroth Generation 

First Generation 

Second Generation 

Figure  3 

A Summary of a Sequence of Trials 



3. REMOVING THE SIMPLIFYThU ASSUMPI'IONS 

It is now shown that the assumptions regarding the feasibility of 

(P) and the independence of B can be dropped uithout impairing the 

effectiveness at the procedure presented in the previous section. 

3.1 Droppins the Assumption that B is Inc endent 

* If B is dc~ndent, u need not be unique. Thus A need not 

be uniquely defined, and although the definition of a valid set remains 

as before we no longer have the characterization A c S c B of validity. - -
In place of A we define the collection AJ (J = 1, ••• , k) ot all 

minimal valid sets, where a valid set is said to be minimal when no 

proper subset of 1 tself is valid. It is sh01-m in Propos! tion 5 that there 

is at least one minimal valid set and that each one is consistent, inde
A 

pendent, a subset of B, and uij > 0, i c Aj • It is not difficult to 

see from the nature of the Kuhn-Tt1cker Conditions that a characterization 

of validity is Aj S s ~ B for some 

and independent, it is obvious that S 

1 ~ j s k • It S is consistent 

is valid if and only if 

satisfies (KT-3) end (KT-4) • 

The procedure of Figure 1 rests on Propositions 1 through 4. 

s s 
(x , u ) 

Propositions 1 and 4 end the first pert ot Proposition 2 do not require 

B to be independent. Proposition 5, as we have just shown, takes the 

place ot the second pert ot Proposition 2. Proposition 6 is designed to 

take the place of Proposition 3. It follo,.,.s that the procedure of 

Figure 1 still applies, end that at e•ch generation of trials at least 

one trial set is one unit ~f distance closer to the collection ot ell 

valid sets then any trial set at the previous generation. 
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~ Holrever,Sl exceptional case arises when a trial set S is not valid but 

s * nevertheless x = x , a possibility that can arise only when B is 

dependent (an example of this situation is given in the Appendix). In 

Proposition 6 it is shown that in this situation at least one optimality 
k 

alarm is from jyl (S - Aj) 1 so that by heeding the alarms one at a time 

S will lead tn at least one set which is closer to some Aj • 

convergence is still assured. 

3.2 Dropping the Assumption that (P) is feasible 

Thus 

Assume that (P) has no feasible solution. We shall show that 

the procedure of Figure 1 is well-defined and terminates in the positive 

branch of step 2b at the first trial set encountered which corresponds 

to an infeasible subset of the constraints. 

The initial trial set can be chosen to be the empty set, any 

singleton, or any other consistent and independent set as usual. By 

Proposition 1 the equations ( =S) have a unique solution s s (x , u ) 

long as S is consistent and independent, and clearly every such set 

leads to at least one feasibility alarm (otherwise (P) would be 

feasible). Furthermore, the first part of Proposition 4 still holds. 

It follows that the procedure of Figure 1 is '\-rell-defined and cannot 

terminate in the positive branch of step 2a. It remains to show that 

the procedure does terminate in the positive branch of step 2b. 

so 
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A set S c M of constraint indices is said to be infeasible when 

(z: aix + bi 2 0 , i e S} is mpty, and is said to be minimally infeasible 

when no proper subset of itself is infeasible. Let Dj(j = 1, ••• , d) be 

the collection of distinct minimally infeasible sets. Then clearly SSM 

is infeasible if and only if Dj S S for &ome 1 s j ~ d , and consis

tency implies feasibility but not conversely. 

Evary consistent end independent trial set S yields at least one feasi

bility alarm from every Dj - S 1 tor otherwise some DJ would be feasible. 

Propos! tion 7 asser,;s that every inconsistent and feasible trial set 

which can arise during the procedure of Figure 1 yields at least one 

"optimality alarm" at step 2b from j~l (S - DJ) • Thus at each pz:aerat1cm 

of trials at least one trial set is one unit of distance closer to 

the collection of all infeasible sets than any trial set at the previous 

generation, except for certain situations (associated with inconsistent 

and feasible trial sets) when one can assert only that at least one 

trial set is one unit of distance closer to at least one of the mini-

mally infeasible sets. The occurrence of an inconsistent and infeasible 

trial set in a finite number of generations is thereby assured. A 

crude upper bound on the required number of generations is the distance 

from the initial ~ial set to the minimally infeasible set which is 

farthest from it. s Proposition 7 also asserts that z ~ 0 tor all 

infeasible sets which arise in the procedure of Figure 1. Thus termination 

in the positive branch of step 2b is assured. 

Remark: The remark at the end of section 2.2 can be generalized to the 

case where it is not kncun '·~hether or not (P) is feasible. I£!t the 

ini+.ial trial set be the empty set and ignore all optimality olorms as 

well as feasibility alarms '·rhich le~d to an -:. ·. ·.,. listent set when heeded. 
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This strategy was seen to be Justified when (p) is feasible. When (p) 

is infeasible, since trial sets can only grow as generations pass the 

situation will eventually be reached where a next generation cannot be 

defined because every feasibility alarm leads to an infeasible, and 

therefore inconsistent, set. This situation is the signal for termination 

when this strategy is used. 

k,    THE QUADRATIC CASE 

Specialization to quadratic programming is natural and easy. 

When f(x) = ^-x Cx + c x , where C is an n by n negative 

definite (symmetric) matrix and c is an n-vector, f meets the 

requirements stated in the introduction and (=S) is a system of linear 

equations with the unique solution (assuming that S is consistent and 

independent-' ) 

US = tAS C'1 AS J'^S " AS C"lc^ ; ui = 0 > i e M-S 

xS = -C'^c + A* u|) , 

where t superscripts denote transpose, A  is a matrix with rows a. , 
Q 1 

3 
i e S , and u  and b  are similarly defined. A computer routine for 

implementing Figure 1 would invert C at the cutset, along with 

(A o C  Ac)  , and thereafter use efficient partitioning methods (see, 

e.g., [^] and Appendix C of [6]) for recomputing (A C" A )'  as S 

is altered by one constraint at a time. A similar strategy applies to 

the solution of  ,IL .  z,a. + aj = 0 , which can be written (and this ieG-i      i  i        i ' s 

o o 
formula applies whether or not    f    is quadratic) 

-'If    S    were dependent,     [A    c"    A-]""     would fail to exist. 
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*S - -ai  As-i (As.i   As-i ^ ■ 
O O O O 

Additional computational economies by partitioning can be obtained when 

some of the constraints are simple non-negativity constraints on the 

variables. 

h.l    Relation to the Algorithm of Theil and  VSB de Panne 

The present algorithm specializes to Theil and van de Panne's 

algorithm [8] for quadratic programming under their assumption:;^' 

[8>  P» 9L which can be phrased as follows:     (a)    (p)    has at least 

tuo different feasible  solutions,   (b)    C    is negative definite,   (c) 

a.x0 +b.   /0 ,   i  c M-G  ,  for every consistent set    S ,  and  (d) 

the  initial trial set  is the empty set.    Assumption (c)  is strong and often 

difficult to verify.     It can be  shown to be equivalent to requiring for 

every consistent set    S    that if    (x ,  u  )     satisfies    (=S)    then 

u.   / 0    for all    i  c  S  ;   in other words,  degeneracy is completely 

excluded.    Assumption  (d)  is not,  of course,  an assumption in the  true 

sense of the word, but rather a convention—when it is followed,   the 

remark at the end  of section 2.2 applies and the procedure of Figure  1 

is  simplified. 

The developments  of this paper show that Theil and von de  Panne's 

algorithm is not impaired if their assumption (c)  is dropped,  and that 

assumption (a) may also be dropped if it ic understood thct the infcaeibility 

of    (p)    is distinguished by the occurrence  of a  generation at which at 

least one feasibility ijlarm occurs and every feasibility alarm leads to an 

3/ 
-'Boot rl,2,3] has rederived the algorithm of Theil and van de Panne, 

but invokes similar assumptions (although he weakens assumption (c) somewhat). 
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inconsistent set. An important extension is obtained if assumption 

(d) is dropped \Then a priori information regarding B is available, for 

then s0 can very likely be chosen such that d(S0
) < d(¢) (hopefully 

d(S0
) << d(¢) ) and the calculation time can thereby be greatly reauced. 

5· Discussion 

It is evident that the algorithm of Figure 1 lTill be efficient 

when: (a) only a short tiu:e is re4,uired, on the average, to solve ( =S' ) 

When (=S") bas been solved and S" differc by only one inde:x from S' ; 

and (b) s0 can be chosen so that d(S0
) is reasonably small, as it 

often can be when a priori knowledge regarding A ar B is available 

due ·;· J familiarity with the given problem or one quite similar to it 

(as in sensitivity analysis). Factor (a) determines the iteration time, 

and (b) the number of iterations. 

\-Then f(x) is quadratic, it was observed that, due to lineari·ty, (=S) 

can be solved very rapidly for a sequence of trial sets by making use of 

partitioning and bordering methods for matrix inversion and reinversion. 

In other cases, methods in numerical analysis for solving (partly 

DDDlinear) systems of equations can be brought to bear, With simplifi

cations arising for special classes of problems (such as linearly separable 

objective functions or non-negativity constraints). As an alternative 

to the direct solution of ( =S) , one may uish to use the fact thot 

x8 is charac~rized 1:tf the property that it maximizes f(x) subject to 

I ~ s 
J. J[ i s found b~· a gr adient-directed 

search or s~ other method, then us is easily found as -Vf(x8 ) A~(AS A~)-l 1 

is a matrix With rows a . , i e S 
~ 

(partitioning methods con 

be used to keep track of the required inverse efficiently). 
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With regard to factor (b) it must be u~served that when d{S 0
) 

is large not only might a very large number of trials be necessary, but 

also the amount of storage required for computer implementation of the 

rules of section 2.2 could become onerous. In this case other strategies 

for determining the sequence of trial sets should be considered. For 

example, if a large pro,ortion of all alarms we~e real {as has been 

observed in numerous tri.Dl ;;: :wnplc s) tb.::n 'the l'ollouin[; "M~rlcov" 

strategy would prove to be an effective alternative to the one ot secti·on 

2.2: heed one alarm at random. Storage is negligible, and although it 

is yossible for this strategy to consume an infinite number ot trials, the 

expected number of trials before convergence would be substantially 

smaller then for the previous strategy {tor '\-Thatever consolation it may 

afford, we point out that it can be shown using the theory of Markov 

processes that the "Markov" strategy leads to convergence within a 

finite number of trials with probability one ). 

In closing, we observe that th~· algorithm can easily be modified to 

i ncorporate consistent and independent l inear equality constraints~ 
as well as inequality constraints in a more efficient manner than by 

rewriting them as pairs ot inequalities (or using some similar device). 

It is easy to see that the indices of these constraints should be included 

in every trial set. This may be accomplished by including them in the 

initial trial set end then ignoring throughout the calculations any 

!lrt can be shown that the hypothesis that f assumes its unconstrained 

maximum can be replaced in this case by the ~reeker hypothesis that f 

assumes its maximum over the linear manifol d determined by the linear 

equality constraints. 
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optimality alarms    which they happen to give.     If the equality constraints 

are not independent,  a maximal independent subset thereof should be used. 
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In all of the proposi tiona of this appendix, f(x) is assumed to be 

differentiable, strictly concave, and to echieve 1 ts unconstrained maximum. 

Lemma 1: 

The maximum of f(x) is uniquely achieved over every non-empty closed 

convex subset of n-dimensional Euclidean space En • 

Proof (outline): Let X be a non-empty closed convex set in En • Put 

Z = {z: z s f(x) for s~ :{ e X} • It is easy to see that Z is non-empty, 

convex, and bounded fran above; it can also be shown to be closed. The 

attainment of the maximum follows immediately, and is unique by the strict 

concavity of r • 

Proposition 1: 

If S ~ M is consistent and independent, then the equations (=S) 

have a unique solution s s (x , u ) • 

Proof: Since S is consistent, the set (x: a
1
x + bi c 0, i e S} is 

non-empty as well as closed and convex. By Lemma 1 the mxilm.lm or r over 

this set is achieved uniquely. It is well-known that a solution (xs, us) 

of ( =S) is a necessary and sufficient condition for this maximum. 

Hence s 
X is unique. By the independence of S , s 

u is also unique. 

PrOposition 2: 

Assume that (P) is feasible. Then there exists a triple 

* * * (x , u , S ) satisfying * (KT-1, ••• , 4) , and x is unique. 

* addition, B is independent, then u is also unique. 

If, in 
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Proof;    By Lemma 1,     (P)    has a unique optimum    x    .    The existence of 

*■ * *     *      * 

u      and   S   CM    such that    (x , u ,  S  )    satisfies    (KT-1,...,  k) 

is assured by the necessity of the Kuhn-Tucker Theorem;  the uniqueness 

of    x      in such a triple follows from the sufficiency of the Kuhn-Tucker 

Theorem and the unlquenssB of the optimal solution of    (p)   . 

When   B    is independent, the uniqueness of    u     follows from 

(KT-l)    upon using the uniqueness of    x    ,  the independence of    B , 

and the fact that    u.  jt 0    only if    i e B    (which follows from the 

uniqueness of    x      and    (KT-2))  . 

Proposition 3: 

Assume that    (p)    is feasible and that    B    is independent.    Let    S 
g 

be consistent and independent but not valid. Then either a.x + b. < 0 
  i i 

3 
for some    i e A-S ,  or    u.  < 0   for some    i e S-B ,  or possibly both. 

Proof;    V/e proceed by contradiction.    Suppose  that (i)    a.x    +b.   ^0, 

i  e A-S ,  and  (ii)    uS ^ 0 ,   i e S-B  . 

Then from (ii),  the Kuhn-Tucker Theorem,  and the definition of 

s    s s (x ,  u  ) ,  it follows that    x      is an optimal solution of the problem 

Maximize f(x)     subject to 

a x + b     = 0 ,   i e SflB 

ax + b.   2: 0 ,   i e S-B  . 
i i ' 

3 
By (i), it follows that x  is also optimal in the problem 
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Maximize f(x) subject to 

( 1) a 1 x + b i = 0 , i e SnB 

aix + bi :<!: 0 , i e (S-B) tJ (A-S) • 

* Now by the Kuhn-TUcker Theorem, & is optimal in 

(2) Maximize f(x) subject to aix + bi :<!: 0 , i e A • 

Since the feasible regi on of (1) is included in that of (2), and since 

* * x is feasible in (1), x is also optimal in (1). 

s * Consequently 1 x = >: optimal solution. 

s * s * To prove u = u 1 note that x = x implies 

( * us) X I satisfies (=S) ; that 

the independence of B • 

* * (x 1 u ) satisfies 

But (1) has a \ODique 

S c B and that -
(=B) ; end e~ply 

Thus s s (x 1 u ) * * is identical with (x 1 u ) 1 and therefore satisfies 

(KT-3) and (KT-4) as uell as (KT-1) and (KT-2) • Consequently, we 

obtain the contradiction that S is valid. 

Remark: Proposition 3 implies that when (P) is feasible and B is 

independent, heeding the alarms due to a consistent and independent set 

one at a time leads to at least one set whi ch is one unit of distance 

closer to the closest valid set--and, in feet, one unit of distance closer 

to every valid set. 

~mma 2: 

~t 1
1

, 12, and 1
3 

be disjoint subsets of M • Exactly one ot the 

following systems has c sol ution: 

(i) a .x + bi = 0 , i e 11 1. 

a .x + bi s: 0 
1 i e 12 ~ 

aix + bi :<!: 0 I i e 13 
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(ii) I^UJ. ^ ^ =0 '1 "i 

v   b    + 1 = 0 ^inyii- ^i Di    -    u 

y1 ^ 0 ,  i e I2 

Yi ^ 0 ,  i e  I3 

Proof;    The proof of this lumac follows frcs.i the dualty thcorora of linecr 

programming [5]. 

System (i) has a solution iff the Unetr programnlng problem 

(l) Minimize    ox    subject to system (i) 

is feasible.    System (ii) has a solution iff the linear programming problem 

Maximize    , .,2 |T   y.   (-b. )    subject to y IjUfgPl   'i N    i' [2i '13    • 

W I^l^ yi ai = 0 

,     f * 0 , i 
1 Uo, i 

yi{^'ie;2 
c  I3 

has an unbounded optimal value;  for if    y      satisfies (ii) then    9y    is 

feasible in (2) for all real    e s 0    and E ey° (-b ) H e _ co   as 
■»■-1 UIoUJ-o      i        * 

3 -♦ « , and conversely if the value of (2) can be made arbitrarily large 

then by the homogeneity of the constraints it can be made equal to unity» 

Observing that (l) and  (2) are dual linear programming problems and that 

(2) is feasible  (e.g, put y = 0  ),  by the dualty theorem we have that (l) 

is infeasible iff (2) has an unbounded optimal value.    This completes the 

proof. 



Pro-position 4: 
s 

~t s c M be consistent and independent, and let ei x + bi < 0 • 
0 0 

Tben SUi
0 

is inconsistent it aDd only if it is dependent, aDd it it is 

dependent then 

(1) its zi ai + aio = 0 

s has e unique solution z and {SU1
0 

- i) is consistent ond iDIIepoDdent 

s for any i ~ S such that zi < 0 • It, in addition, (P) is feasible, 

then inconsistency of SU1
0 

implies that the eacess ot S is non-empty 

s end that zi < 0 for some 1 therein. 

~: Since S is independent, SU1
0 

is dependent itf (1) has a solution. 

By Lemme 2, 

(2) 

SUi is inconsistent iff 
0 

has a solution. Thus to sh~., that SU1
0 

is inconsistent itf it is dependent 

it is equivalent to sh~., that (1) has a solution iff (2) does. To establish 

that (1) has a solution when (2) does, let y' be a solution of (2) and 

note that it follows from the definition of x5 end Le111118 2 that Yi > 0 
0 

aence z5 = (y'/y' ) , 1 t S , solves (1). To establish the converse, we 
i i io 

shall shov that y' • 9zi' , i e S , and y' • 9 sol •1es (2) tor some real 
io 

9 > 0 if z' solves (1). Suppose tbe contrary. Then it must be that 

and upon multiplying (1) by x5 and adding tbe result to (3) one would obtain 
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ih zi (ai xF ' V + (ai   xS -^^ ) ^ 0 » 
o o 

3 
which would lead to a contradiction of the definition of    x    ,    The -orcof 

that    SUi      is  inconsistent iff it is dependent is complete. 
o 

When    Syi      is dependent,   (l) oust have a unique  solution    z      by 

the  independence  of    S  .    To prove  that    [S!Ji    - i]    is consistent and 
S 

independent for any    i    such that    z.  < 0 ,   it suffices to prove this 
c 

statement for any    i    such that    z    ^ 0  .    Independence  is an easy con- 

sequence  of the  independence of    S   .    To show consistency, by Lenaaa 2 

it is equivalent to show that the existence of    y    such that 

ife-i* ^i  0i  + ^i    Qi    = 0    and    ife-i, ^i bi + ^i    bi     + ! = ^ ^ere 
* 0       0 * o       o 

z.    ^ 0  ,   leads to a contradiction.    The contradiction is obtained as 

follows.    Assume that   y.     ^ 0  ,  for otherwise by Lemma 2    S - i„ 
o 

would be  inconsistent, which vrould contradict the consistency of    S  . 

Then    .£_   .     (y./y    ) 2.   + a.     - 0  .    But by the uniqueness  of the solution ieS-i#      i,0'io
/    i        io 

c 
of (l),   this is impossible when    z.     j^ 0  , 

Finally we nrcve that if    (r)    is feasible and    SiJl      is inconsistent, 
c 

then    S    has a  non-empty excess and    z^ < 0    for at least one    i    therein. 
i 

c 
Suppose  to the  contrary that    zV ^ 0  ,   i e S-B ,  where we do not rule  out 

the possibility that   S-B = ^  .    Then for some    9 > 0    one would ha 

,IL 9    zu a.   + 0° a.     =0 
ieS ii i o 

y   e0zsb. + o0b.   = -i , ie3 ii io 

where    9    z.   ^ 0 ,   i c S-B ,  and by Lemma 2 the  system 

a.x+t. =0,   ic GOB 
i           i 

a.x  + b. > 0 ,   i  c   [S-B]Ui i i ' J     o 

ve 
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vould have no solution,   thus contradicting the  fact that 

a.x    +bJ=0.ieB 
i i 

ax    + h.  > 0  .  M-B  . 
i i 

This completes the proof. 

Lemma 3i 

Let    d    be c given n-vector.     If      ,XL u.   a.   » d    has a non-negative 

1 
solution,   then it has a non-negative solution    u      such that 

[i e S:    u.  > 0]    is independent, 
i J 

Proof;    See  [5,  p.  50]. 

Proposition 5: 

Assume that    (?)    is feasible.    Then the  collection    A (j  = 1,...,  k) 

\. 
A J 

J 

of all minimal valid sets for    (P)    is not empty,  and each   A.    is consistent, 
A J 

1 independent,  a  subset of    B ,  and    u.    > 0 for each    i  e A     , Furthermore, 

an arbitrary set    S      is valid if and only if    A.    c    S    c B    for some 
' jo - - 

1 ^ jo 2 k  . 

#     #     $• 
Proof;    By Proposition 2,   there  is at least one  triple     (x ,  u ,  S  ) 

which satisfies    (KT-1,...,   U)   .    If    S      is not minimal,  then from the 

nature  of    (KT-1,,..,  h)    and Lemma  3 it is cleur that one may delete 

constraints from   S      anü construct nev; couples     (x ,  u)    satisfying the 

associated     (KT-1,.,.,  h)    until a minimal valid  set is  obtained.    Thus 

there  is  at least ore minimal valid  set. 

Let    A.    be any alnlmcl valid set.    By the definition of validity, 
J      A. A 

there exists    u        (at this point we cannot assert the uniqueness of    u ^) 



AJ * such that (u , x ) satisfies (KT-1, ••• , 4) associated With AJ • 

It follows immediately that A4 c: B , and is therefore consistent. From 
" -A 

the nature of (KT-1, ••• , 4) , ui j > 0 for ell i e A j ; otherwise 

a proper eubset at A j would be valid. The independence of A J follows 

by similar reasoning With the aid ot IeiiiDB 3. 

Tbe criterion tor tbe validit,y of en arbitrary subset at constraint 

indices follows straightforwardly by arguments similar to those used above. 

Proposition 6: 

Assume that (P) is feasible. let S c: M be consistent and 

s .1. * independent but ~valid. If x ,. x , then for each minimal valid set 

s s 
Aj we beve either eix + bi < 0 tor some i e Aj-s , or u1 < 0 for 

s * some i e S-B , or possibly both. If, on the other hand, x • x 1 

then j~l (S-Aj) ~- and u~ < 0 for some i therein. 

s .1. * ~: Assume x ,. x • He proceed by contradiction. Suppose for some 

s 1 ~ j
0 

~ k that (i) aix 
s 

+ bi ~ 0 , i e Aj - S , and (ii) ui ~ 0 , i e S-B • 
0 

Tben by arguing exactly as in the proof of Proposition 3 ~ri th A j in 

s * 0 ploce of A , one may derive the contradiction that x = x 

s * Now we assume x = x • Observe that S S B , and therefore since 

S is not valid we have Aj ~ S, j = 1, ••• , k. Clearly s- Aj; ¢, 
j = 1, ••• , k , tor otherwise S would have to be a proper subset of some 

AJ 1 Which would contradict the uniqueness of the positive representation 

* k of -vt(x ) in terms of the ai , i e Aj • A fortiori, j~1(s - Aj) J ¢ . 
s It remains to show that u. < 0 for some i therein. A useful identity is 
l. 
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k 
and for simplicity ue \rrite    I    for    S.n    A.   . 

J=1    3 
V/e may assume:     (a) that    I / 0 ,  for  otherwise    S - I = S    and 

c 
hence the desired ccnciusion (which becomes u. < 0 for some i e S ) N i 

mu; 
s 

;t obtain or else     (x^,  u  )    would satisfy    (KT-h)    as well as 

(KT-1,  2,  3)    and    S    would be valid;  and   (b) that    u   < 0    for  some 
g 

i c  I  ,   for otherwise  the desired conclusion must obtain or else    u.s o 
' i 

for all    i e S    and    S    would again be valid.    Me shall prove  that 
g 

u'   < 0    for some    i  e  5 - I    by supposing the contrary and finding    i     :  I 
k 

such that    S.II A.   -  1      is valid,  thereby contradicting the fact that j=l    J o 

every valid set contains at least one    A.   .    To find such an    i     »it 
J 0 

suffices to find i0 c I -nd u euch that 

(1)     Vf(x*) + ^       ^ ai = 0   ^ad    u   ^0 ,  i  e{S 5 A -iJ 

for then    (x ,  u)    satisfies    (KT-1,.•.,   h)    associated with    [S ll  A.-i   }   , 

V/e now nroceed to find  such an    i      an      ü  . 
A. 

Now for each minimal valid set, we hove    u.     > 0  .  i c A,   ,  and 
A ' i ' j   ' 

u l     satisfies 

* A- 
7f(x   )  +   .   I    u.J  a.   -- 0   . v ieit.    i      i 

/•. 
For convenience,  v/e wite    u. .    for    u.      .     Partitioning   A.     into    I    and 

ij      i J 

A - I , adding all k such equations and dividing by k , one obtains 
J 

(2)    ^(x*) + 1?I ^KjA) ^ * jl: . J J-^M a, = 0 . 
J 

Frcm assumption (b) and our supposition we als. have u. 20, i^S-I, 

and u. < 0 for some  i e I , and u0 satisfies 
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(3) Vf(x ) . 1J.I uj a.  + lFl u^i = 0 . 

Multiplying (2) by    (l-t)    ::nd  (3) "by    t    and adding,  where    t    is a real 

number, we  obtain 

(4) Vf(/) + i?i  [t uj + (l-t) ^(u^A)] ai + t J^ ^ a1 + 

(l-t) |_      I (u    /k) a    = 0   . 

Put 

t0=Min |(unA)/(|(u    A) -uf)       . 

By construction,   clearly    0 < t0 < 1    and     [t0 u0 + (l-t0)   ^-.(u. .A)]  ^ 0 

for all    iel    with strict equality holding for at least one     i  ,   say 

i     .    Upon making the appropriate identifications of    u    in {h) with 

t = t    ,   it follows that (l) holds.    This  completes the proof. 

Proposition T: 

Assume that    (p)     is infcasible.    Let    S CM   be consistent and 

independent, and let    SUi      be inconsistent, where    a.    x    + b.    < 0  . o ' i i o o 
Then 

(1) ^   z.   ai   
+ ^^i     = 0 

1 li u        1 1 1 
0 

C r- 

has a unique solution    z^ ,  and    z'   5 0    .if and only if    SUi      is in- 

feasible.    Furthcrnore,   if    SUi      is feasible then      'J,[(SUi   )  - D.I  ^ ^ 
o j=llv      o' JJ       ' 

S 
and    z.  < 0    for some     i    therein. 

Proof:    The existence  of the unique solution    z      of (l) is known from 



Proposition 4, and the assertion that z5 > 0 iff SUi is infeasible is 
• 0 

a consequence of Lemma 2 and the relationship established in the proof of 

Proposition 4 betlreen the solutions of (l) and of 

(2b) t y b + 1 = 0 • 
i cSUi i i 

0 

Assume that SUi
0 

is feasible. This, with the inconeistency of 

SUi and the definition of xs , implies by Lemma 2 that (2) has a 
0 

solution y' such that y! > 0 and y! < 0 for some i e S • First 
~0 l 

we show that {(SUi
0
)- Dj } 1 ¢ 1 j = 1 1 ••• , d • Suppos~ the contrary. 

Then SUi
0 

S D j 
0 

for some 1 ~ j ~ d 1 and in fact St Ji c Dj 
0 0 0 

since 

SUi is feasible. 
0 

Sine~ Dj is minimally infeasible, there exist raal 
0 

numbers wi > 0 , i e Dj 1 such that 
0 

(38) 

(3b) 

!: w 
i 

istDj -SUi 1 oo 

a i + t "'i a1 = 0 
ie SUi 

0 

t wi bi + l = 0 • 

ie SUi 
0 

Letting y = y' in (2) and taking a convex combination of (2a) with (38), 

and of (2b) with (3b), one obtains for any real t 

(4a) ~ (l-t) ,.,i ai + t (( ).-t) ,.,i + t y~] ai • 0 
ie[Dj

0
-SUi

0
} ie SU1

0 

(!~b) 

Since Yi < 0 for some i e S 1 Yj_ > 0 1 and ''i > 0 1 i e Dj 1 we can choose 
0 0 0 0 

an appropriate 0 < t 0 < 1 to make ((l-t ) ,.,i + t Yi,] ~ 0 1 i e SUi
0 

1 

,lit h strict equality holding for sace i e S • Hence a proper 



subset of DJ would, by Lemma 2, be infeasible--thus violating the 
0 
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minimal infeasibility of DJ • Hence our supposition must be wrong and 

a fortiori J~1 ((SUi0 ) - DjJ
0

~ ~, j • 1, ••• , d • It remains to sh~~ 
s that zi < 0 far some i therein. A useful identity is 

3§1 ((SUi0 ) - DjJ = SUi0 - (SUi0 ) jQl Dj , 

and for simplicity ve write I for (SUi 0 )j~l Dj • 
d 

We may assume (a) that I ~ ~ , far otherwise j~l ((SUi
0

) - Dj} = Sl!i
0 

and the desired conclusion follows from the known fact that z~ < 0 

far some i e S , and (b) that z~ < 0 tar some i e I , tor otherlise 

s the desired conclusion again follows from the known fact that zi < 0 

tar some i e S • Using these assumptions, "'e shall prove the desired 

assertion by supposing the contrary and finding i* c I such that 
d 

(SUi
0

) j~l Dj - i* is infeasible, thereby contradicting the tact that 

every infeasible set contains at least one D j • To find such an i* 1 

it suffices to find 1* e I and y ~ 0 such that 

~ y1 bi + 1 = 0 , 

ie((SUi0 ) j~l Dj-i*} 

d 
for then by Lemma 2 ((SUi

0
) j~l Dj-i*J uould be infeasible. \ole now 

proceed to find such an i* and y under the supposi\;~~ .. 1 that 

i e SUi0 - I • 

Since each Dj is minimally infeasible, there exist real numbers 

,., ij > 0 , i e D j , j = 1, ••• , d , such that 



(58) and 

Partitioning Dj into I and DJ - I 1 adding all d equations of 

type ( 5a) and dividing by d 1 one obtains 

(6a) 

Similarly 1 the equations of type ( 5b) yield 

Putting y • y' in (2) and adding t times (2a) to (1-t) times 

(6a) yields 

(7a) 

Si1111larly1 (2b) and (6b) yield 

(1b) 
d 

1ft (t Yi + (1-t) j~(w1J/d)) b1 + E t Yt 
ieSl.Ji

0 
-I 

+ J~ t (1-t) (,.,ij/d) bi + 1 "' 0 • 
icDj-I 

s Since the sips ot z1 and y~ agree for i ~ S 1 by assumptions (a) 

and (b) and our supposition we can choose an appropriate 0 < t 0 < 1 

0 0 d 
to make [t Yi + (1-t ) j~1(wij/d)) ~ 0 1 i e I 1 With strict equalit,y 
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holding for some    i^    therein.    Upon making the appropriate identifications 

in  (7a) and (7b),   the desired    1^    and    y    are at hand.    This completes 

the proof. 



Example 

The example of Figure A-1 is designed to show that x5 • x* is 

possible vben S is consistent, indQpendent and invalid and B is 

dependent. The same ccnvcnt~:ons ere followed here as in the example ot 

section 2.3 at the text. 

Figure A-1 

Clear]¥ B • (1,2, 3} , aDd ve mey take the minimal valid sets as 

A1 • (1,2} aDd A2 • (1, 3) (k • 2) • '!bus tbe consistent and independent 

{2,31 * trial set {2,3} is not valid. Nevertbelees, x · • x • 

In accordance With the pertiaent assertion of Proposition 6, s • (2,3) 

yields an optimality alarm in (S - A1) U {s - A2) = {2,3) , namely for i • 3 • 

Heeding it leads to the trial set {2} , which yields a feasibility alarm 

tor i • 1 ; heeding this feasibilit,y alarm leads to {2,1) , Which is 

valid (i.e. it yields no alarms). 
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